Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 13(12)2021 11 23.
Article in English | MEDLINE | ID: covidwho-1542793

ABSTRACT

Evidence varies as to how far aerosols spread from individuals infected with SARS-CoV-2 in hospital rooms. We investigated the presence of aerosols containing SARS-CoV-2 inside of dedicated COVID-19 patient rooms. Three National Institute for Occupational Safety and Health BC 251 two-stage cyclone samplers were set up in each patient room for a six-hour sampling period. Samplers were place on tripods, which each held two samplers at various heights above the floor. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid. Patient medical data were compared between participants in rooms where virus-containing aerosols were detected and those where they were not. Of 576 aerosols samples collected from 19 different rooms across 32 participants, 3% (19) were positive for SARS-CoV-2, the majority from near the head and foot of the bed. Seven of the positive samples were collected inside a single patient room. No significant differences in participant clinical characteristics were found between patients in rooms with positive and negative aerosol samples. SARS-CoV-2 viral aerosols were detected from the patient rooms of nine participants (28%). These findings provide reassurance that personal protective equipment that was recommended for this virus is appropriate given its spread in hospital rooms.


Subject(s)
COVID-19/virology , Patients' Rooms , Respiratory Aerosols and Droplets/virology , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Hospitals , Humans , Middle Aged , Patients' Rooms/statistics & numerical data , Phosphoproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
2.
J Clin Microbiol ; 59(12): e0144621, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1522905

ABSTRACT

To provide an accessible and inexpensive method to surveil for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations, we developed a multiplex real-time reverse transcription-PCR (rRT-PCR) assay, the Spike single-nucleotide polymorphism (SNP) assay, to detect specific mutations in the spike receptor binding domain. A single primer pair was designed to amplify a 348-bp region of spike, and probes were initially designed to detect K417, E484K, and N501Y. The assay was evaluated using characterized variant sample pools and residual nasopharyngeal samples. Variant calls were confirmed by SARS-CoV-2 genome sequencing in a subset of samples. Subsequently, a fourth probe was designed to detect L452R. The lower limit of 95% detection was 2.46 to 2.48 log10 genome equivalents (GE)/ml for the three initial targets (∼1 to 2 GE/reaction). Among 253 residual nasopharyngeal swabs with detectable SARS-CoV-2 RNA, the Spike SNP assay was positive in 238 (94.1%) samples. All 220 samples with threshold cycle (CT) values of <30 for the SARS-CoV-2 N2 target were detected, whereas 18/33 samples with N2 CT values of ≥30 were detected. Spike SNP results were confirmed by sequencing in 50/50 samples (100%). Addition of the 452R probe did not affect performance for the original targets. The Spike SNP assay accurately identifies SARS-CoV-2 mutations in the receptor binding domain, and it can be quickly modified to detect new mutations that emerge.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription
3.
Clin Infect Dis ; 73(7): e1790-e1794, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455276

ABSTRACT

BACKGROUND: Previous research has shown that rooms of patients with coronavirus disease 2019 (COVID-19) present the potential for healthcare-associated transmission through aerosols containing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, data on the presence of these aerosols outside of patient rooms are limited. We investigated whether virus-containing aerosols were present in nursing stations and patient room hallways in a referral center with critically ill COVID-19 patients. METHODS: Eight National Institute for Occupational Safety and Health BC 251 2-stage cyclone samplers were set up throughout 6 units, including nursing stations and visitor corridors in intensive care units and general medical units, for 6 h each sampling period. Samplers were placed on tripods which held 2 samplers positioned 102 cm and 152 cm above the floor. Units were sampled for 3 days. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid and the housekeeping gene human RNase P as an internal control. RESULTS: The units sampled varied in the number of laboratory-confirmed COVID-19 patients present on the days of sampling. Some of the units included patient rooms under negative pressure, while most were maintained at a neutral pressure. Of 528 aerosol samples collected, none were positive for SARS-CoV-2 RNA by the estimated limit of detection of 8 viral copies/m3 of air. CONCLUSIONS: Aerosolized SARS-CoV-2 outside of patient rooms was undetectable. While healthcare personnel should avoid unmasked close contact with each other, these findings may provide reassurance for the use of alternatives to tight-fitting respirators in areas outside of patient rooms during the current pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , RNA, Viral/genetics , Referral and Consultation , United States
4.
Clin Transl Gastroenterol ; 12(6): e00363, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1262701

ABSTRACT

INTRODUCTION: Mounting evidence demonstrates potential for fecal-oral transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The US Food and Drug Administration now requires SARS-CoV-2 testing of potential feces donors before the use of stool manufactured for fecal microbiota transplantation. We sought to develop and validate a high-sensitivity SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) procedure for testing stool specimens. METHODS: A modified extraction method was used with an RT-PCR assay adapted from the Centers for Disease Control and Prevention PCR protocol for respiratory specimens. Contrived specimens were created using pre-COVID-19 banked stool specimens and spiking in known concentrations of SARS-CoV-2-specific nucleic acid. The highest transcript concentration at which 2/2 or 1/2 SARS-CoV-2 targets were detected in 9/10 replicates was defined as the dual-target limit and single-target limit of detection, respectively. The clinical performance of the assay was evaluated with stool samples collected from 17 nasopharyngeal swab RT-PCR-positive patients and 14 nasopharyngeal RT-PCR-negative patients. RESULTS: The dual-target and single-target limit of detection were 56 copies/µL and 3 copies/µL, respectively. SARS-CoV-2 was detected at concentrations as low as 0.6 copies/µL. Clinical stool samples from known COVID-19-positive patients demonstrated the detection of SARS-CoV-2 in stool up to 29 days from symptom onset with a high agreement with nasopharyngeal swab tests (kappa statistic of 0.95, P value < 0.001). DISCUSSION: The described RT-PCR test is a sensitive and flexible approach for the detection of SARS-CoV-2 in stool specimens. We propose an integrated screening approach that incorporates this stool test to support continuation of fecal microbiota transplantation programs.


Subject(s)
COVID-19 Testing/methods , COVID-19/transmission , Fecal Microbiota Transplantation/methods , Feces/virology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , COVID-19 Testing/statistics & numerical data , Centers for Disease Control and Prevention, U.S./standards , Fecal Microbiota Transplantation/statistics & numerical data , Humans , Nasopharynx/virology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Tissue Donors/supply & distribution , United States
5.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: covidwho-991749

ABSTRACT

Broad testing for respiratory viruses among persons under investigation (PUIs) for SARS-CoV-2 has been performed inconsistently, limiting our understanding of alternative viral infections and coinfections in these patients. RNA metagenomic next-generation sequencing (mNGS) offers an agnostic tool for the detection of both SARS-CoV-2 and other RNA respiratory viruses in PUIs. Here, we used RNA mNGS to assess the frequencies of alternative viral infections in SARS-CoV-2 RT-PCR-negative PUIs (n = 30) and viral coinfections in SARS-CoV-2 RT-PCR-positive PUIs (n = 45). mNGS identified all viruses detected by routine clinical testing (influenza A [n = 3], human metapneumovirus [n = 2], and human coronavirus OC43 [n = 2], and human coronavirus HKU1 [n = 1]). mNGS also identified both coinfections (1, 2.2%) and alternative viral infections (4, 13.3%) that were not detected by routine clinical workup (respiratory syncytial virus [n = 3], human metapneumovirus [n = 1], and human coronavirus NL63 [n = 1]). Among SARS-CoV-2 RT-PCR-positive PUIs, lower cycle threshold (CT ) values correlated with greater SARS-CoV-2 read recovery by mNGS (R2, 0.65; P < 0.001). Our results suggest that current broad-spectrum molecular testing algorithms identify most respiratory viral infections among SARS-CoV-2 PUIs, when available and implemented consistently.


Subject(s)
Betacoronavirus/isolation & purification , COVID-19/diagnosis , Coronavirus OC43, Human/isolation & purification , Influenza A virus/isolation & purification , Metapneumovirus/isolation & purification , SARS-CoV-2/isolation & purification , Betacoronavirus/genetics , COVID-19 Nucleic Acid Testing/methods , Coinfection/virology , Coronavirus OC43, Human/genetics , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Humans , Influenza A virus/genetics , Metagenome , Metagenomics , Metapneumovirus/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL